Computational Analysis of nAChR α4 and β2 Subunit Stability and NMR Study of Protein Anesthetic Interaction

> By: Logan Woodall Mentor: Dr. Pei Tang

General Anesthetics

- Induce unconsciousness and prevent painful stimuli from being recognized
- Modify flow of sodium ions into neurons
- Both ion-gated channels/cys-loop regions of membrane-bound proteins implicated in activity
- How is anesthetic effect accomplished?

$\alpha 4/\beta 2$ Subunit Characteristics

α4=136 aa long, β2=142
Transmembrane proteins
High pI naturally

 (α4=7.64, β2=8.97)
 =low stability in NMR solution with low pH

Form heteropentameric

nAChR (3 α4, 2 β2)

Challenges of NMR

- Difficult to perform NMR on membranebound proteins
 - Unstable sample
 - Poor protein folding
 - Variable flexibility
 - Size limitations

Increasing Stability

- Native $\alpha 4$ and $\beta 2$ sequences unstable in solution suitable for NMR (low pH)
- Sequence mutations act to increase stability (mutants stable for >1 week, native <1 day)
- Because β2 mutant still tends to aggregate, further mutation necessary to give β2 the same level of stability as α4

NAMD Simulations

- Examine stability of $\alpha 4$ and $\beta 2$ nAChR subunits
- Dimerize subunits and calculate dimer stability
- Model cell membrane properties and repeat simulations

Simulations (Contd.)

- Repeat dynamics simulations using mutant sequences instead of original pdb sequence
- Observe stability of $\alpha 4\beta 2$ heteropentamer
- Stability measured by rmsd calculations

NMR Spectroscopy

- Titration experiment: chemical shifts caused by anesthetic with concentration varying over time
- Concentration lowered by running sample at high temp for long periods of time
- Tryptophan signals unique due to ring contribution in signal; anesthetic interaction with trp observed

Experimental Methods

- NMR sample
 - $-250 \ \mu l \ \alpha 4$
 - 80 mM LDAO detergent
 - pH 4.7
 - ¹⁵N labeled

- NMR Spectrometer
 - 700 MHz
 - 45°C
 - p3919gp (water suppression, 1D spectra)
 - TROSY (2D spectra with sharper peaks)

Halothane Concentration Blue - no halothane Red - 4.0 mM halothane

2D TROSY-HSQC NS=64 D_1 =1s

Sw=13 ppm

TD=1K (¹H), 128 (¹⁵N)

Effects of Isoflurane on $\alpha 4$

Blue - no isoflurane Red - 5.0 mM isoflurane

Purple - 1.83 mM isoflurane

2D TROSY-HSQC NS=64 D_1 =1s Sw=13 ppm

TD=1K (¹H), 128 (¹⁵N)

Halo Effects vs. IsoF Effects Blue - no halo Purple - 4.0 mM halo Red - halo removed Pink - 5.0 mM isoF

[mqq] [mdd] E W112NH 106.0 106.5 80 W130NH 107.0 0 2 N F2 [ppm] 10.65 10.60 10.55 7.5 F2 [ppm] 8.5 8.0

2D TROSY-HSQC NS=64 D_1 =1s Sw=13 ppm

TD=1K (¹H), 128 (¹⁵N)

Conclusions

- Isoflurane = stronger anesthetic (caused greater chemical shifts)
- W130NH = more reactive tryptophan (near end of loop 4, not concealed within helix)

Acknowledgements

- BBSI 2009
- Pitt/Duquesne Universities
- NIH/NSF
- Drs. Pei Tang, Vasyl Bondarenko, Jeffry Madura, and Tommy Tillman

References

1. C.G. Canlas, T. Cui, L. Li, Y. Xu, and P. Tang. 2008. J. *Phys. Chem. B*. 112: 14312–14318.

2. P. Tang and Y. Xu. 2002. *Proc Natl Acad Sci*. 99: 16035–16040.